Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views : Ad Clicks : Ad Views :

Scientists Are Beginning To Understand The Mystery Of Merging Black Holes

/
/
/
200 Views

Astrophysicists from the University of Birmingham have made significant progress in understanding a key mystery of gravitational wave astrophysics – they mystery of how two black holes can collide together and merge.

On September 14 2015 at 5:51 am the first confirmed detection of gravitational waves occurred. It made waves the scientific community as it confirmed a major theory of Albert Einstein’s from 1915. In which his Theory of General Relativity believed that gravity travels through the cosmos in ‘waves’.

The researchers said they detected gravitational waves coming from two black holes – extraordinarily dense objects whose existence also was foreseen by Einstein – that orbited one another, spiraled inward and smashed together. They said the waves were the product of a collision between two black holes 30 times as massive as the Sun, located 1.3 billion light years from Earth.




 

The scientific milestone, announced at a news conference in Washington, was achieved using a pair of giant laser detectors in the United States, located in Louisiana and Washington state, capping a long quest to confirm the existence of these waves.

The announcement was made in Washington by scientists from the California Institute of Technology, the Massachusetts Institute of Technology and the LIGO Scientific Collaboration.

From the University of Birmingham: 

In order for the black holes to merge within the age of the Universe by emitting gravitational waves, they must start out very close together by astronomical standards, no more than about a fifth of the distance between the Earth and the Sun. However, massive stars, which are the progenitors of the black holes that LIGO has observed, expand to be much larger than this in the course of their evolution. The key challenge, then, is how to fit such large stars within a very small orbit. Several possible scenarios have been proposed to address this.

The Birmingham astrophysicists, joined by collaborator Professor Selma de Mink from the University of Amsterdam, have shown that all three observed events can be formed via the same formation channel: isolated binary evolution via a common-envelope phase.




 

A new paper, published in Nature Communications, goes into detail on locating the source of the gravitational anomaly. Using a newly developed toolkit named COMPAS (Compact Object Mergers: Population Astrophysics and Statistics), the team was able to comprehend the results from the event.

Senior author Professor Ilya Mandel spoke on the issue: “This work makes it possible to pursue a kind of ‘palaeontology’ for gravitational waves. A palaeontologist, who has never seen a living dinosaur, can figure out how the dinosaur looked and lived from its skeletal remains. In a similar way, we can analyse the mergers of black holes, and use these observations to figure out how those stars interacted during their brief but intense lives.”




 




 

  • Facebook
  • Twitter
  • Google+
  • Linkedin
  • Pinterest

Newsletter

Get our Tips and Tricks to your Inbox

This div height required for enabling the sticky sidebar